
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Every Build You Break: Developer-Oriented
Assistance for Build Failure Resolution

Carmine Vassallo · Sebastian Proksch ·
Timothy Zemp · Harald C. Gall

This is a pre-print of an article published in Empirical Software Engineering. The final
authenticated version is available online at: https://doi.org/10.1007/s10664-019-09765-y.

Abstract Continuous integration is an agile software development practice.
Instead of integrating features right before a release, they are constantly being
integrated into an automated build process. This shortens the release cycle,
improves software quality, and reduces time to market. However, the whole
process will come to a halt when a commit breaks the build, which can happen
for several reasons, e.g., compilation errors or test failures, and fixing the build
suddenly becomes a top priority. Developers not only have to find the cause
of the build break and fix it, but they have to be quick in all of it to avoid
a delay for others. Unfortunately, these steps require deep knowledge and
are often time-consuming. To support developers in fixing a build break, we
propose Bart, a tool that summarizes the reasons for Maven build failures
and suggests possible solutions found on the internet. We will show in a case
study with 17 participants that developers find Bart useful to understand
build breaks and that using Bart substantially reduces the time to fix a build
break, on average by 37%. We have also conducted a qualitative study to better
understand the workflows and information needs when fixing builds. We found
that typical workflows differ substantially between various error categories, and
that several uncommon build errors are both very hard to investigate and to
fix. These findings will be useful to inform future research in this area.

Keywords Software Engineering · Agile Software Development · Software
Development Tools · Build Break · Summarization · Error Recovery

Carmine Vassallo, Sebastian Proksch, Timothy Zemp, Harald C. Gall
University of Zurich - Switzerland
E-mail: vassallo@ifi.uzh.ch, proksch@ifi.uzh.ch, timothy.zemp@uzh.ch, gall@ifi.uzh.ch

2 Vassallo et al.

1 Introduction

Continuous integration (CI) is an agile software development practice that
advocates frequently integrating code changes introduced by different devel-
opers into a shared repository branch [18]. An automated system builds every
commit, runs all tests, and verifies the quality of the software, e.g., through au-
tomated static analysis tools [8]. This helps to detect issues earlier and locate
them more easily [19]. CI is widely adopted in industry and open source envi-
ronments [53] and has already proven its positive effects on release frequency,
software reliability, and overall team productivity [17].

Despite its undisputed advantages, the introduction of CI in established
development contexts is anything but trivial. Hilton et al. [16] found that build
breaks are a major barrier that hinders CI adoption and various reasons exist
for a build to break [51], e.g., compilation errors, testing failures, poor code
quality, or missing dependencies. Developers need to learn how to efficiently
identify the reasons for a build break and, unfortunately, the required skill
set is still different to traditional debugging. Established techniques that are
widely used in the development environment [30], like setting breakpoints to
investigate a program right before a crash, are not applicable, which makes
it difficult and time consuming to remove a build break [16]. As a result,
developers spend a significant amount of their working time comprehending
and solving build breaks. It takes on average one hour to fix build breaks [19].

Those results motivate the need for new ways to support developers in un-
derstanding build breaks and in deriving a fix. Existing works have already pro-
posed automatic build-fixing techniques, e.g., [23]. However, such approaches
are typically limited to a specific type of build break (i.e., fixing unresolved de-
pendencies). In this paper, we propose a developer-oriented assistance system
that supports build break fixes by summarizing available information and by
linking to external information. We do not focus on a specific build problem,
but empower the developer by providing relevant information in a wide range
of build failures. To the best of our knowledge, we are the first to propose such
an information-centric developer support during build breaks.

In the first part of this paper, we will investigate whether generated sum-
maries can help developers with comprehending build logs. We will also em-
pirically analyze the effect of a build summarization tool on the time needed
for understanding and fixing a build break. More specifically, we will answer
two research questions:

RQ1: Are summarized build logs more understandable?
RQ2: Does a semi-automated support system influence the time that is re-

quired to fix a broken build?

We have implemented the Build Abstraction and Recovery Tool (BART) to
study these questions. Bart is a Jenkins plugin that summarizes logs of failed
Maven builds and that links related StackOverflow discussions to help
solve the build failure. To answer both research questions, we deployed Bart
in an empirical study with 17 developers. Our results show that developers

Developer-Oriented Assistance for Build Failure Resolution 3

consider the generated summaries helpful for fixing build breaks; as a further
result, the resolution time for fixing the build can be significantly reduced.

However, the results also show that developers only find some solution hints
valuable, other cases are perceived as less helpful. To understand this observa-
tion, we asked the following research questions and discuss the corresponding
results in the second part of the paper.

RQ3: How do developers approach different types of build failures?
RQ4: What types of build failures are hard to fix?

To answer these questions, we have conducted a large-scale qualitative study
that involved 101 developers. Our results show that fundamental differences
exist in how developers approach the different failure categories that have
been investigated. For example, while code-analysis build failures are easy to
fix with information contained in the build log, other scenarios like testing
failures require a much deeper investigation of information that needs to be
collected elsewhere. Our survey has also revealed that problems related to
the build infrastructure are not only hard to investigate, but also hard to
address, once the problem is understood. While these categories are known,
they have not yet been the focus of an investigation, likely because they occur
too infrequently. Our results suggest that they are still worth investigating,
because they represent a major pain-point for developers when they occur.

In summary, this paper makes the following contributions:

– Presentation of a novel idea to support build fixing through build log sum-
marization and linking to StackOverflow resources.

– Proof-of-concept implementation for Bart.
– Investigation of the effect of Bart on the understandability of build failures

and the time for fixing a build failure
– A qualitative analysis of the workflows and information needs of developers

that resolve build failures.

This paper is an extension of previous work [49]. Compared to the original
paper, it contains the following new contents.

– We have added two research questions that investigate qualitative aspects.
– We have doubled the number of the participants in the experiment to im-

prove the evaluation of Bart and to make our findings more convincing.
– We have conducted 9 semi-structured interviews with several study partici-

pants to better understand information needs and the limitations of Bart.
– We have sent out a survey and analyzed 101 answers from a diverse set of

developers to validate our interview results with a more general crowd.
– We have derived a methodology to open-code build fixing workflows.
– We have published Bart and open-sourced the implementation [3].

Scripts, data, and additional material are available in the online appendix [50].

4 Vassallo et al.

Build Summary

Build Status Failed

Failed Goal org.apache.maven.plugins:maven-compiler-plugin:2.1:compile

Error Cause Compilation Failure

Reactor

ActiveJpa SUCCESS

test SUCCESS

core FAILURE

utils SKIPPED

Reason for Build Failure: Compilation Failure

Hint: Compilation

Your build contains a compilation error. Please check the following
file:

File: Model.java
Line: 224
Reason: Model is abstract; cannot be instantiated

Done

Build Server

Build
Passed?

Repository

Build
Log

Notification

Hint Generators

1 2

3

4

[INFO] Scanning for projects...
[INFO] Inspecting build with
total of 1 modules...
[ERROR] To see the full stack
trace of the errors, re-run
Maven with the -e switch.

5

7

Developer

Compilation

Testing

Code Analysis

Dependencies

6
BART

8StackOverflow Discussions

9

Fig. 1: Overview over the Build Summarization Approach

Developer-Oriented Assistance for Build Failure Resolution 5

2 Creating a Build Abstraction and Recovery Tool (Bart)

To understand our vision of developer-oriented assistance, it is important to
reflect on the typical CI pipeline that is illustrated in Figure 1. Developers
working in such a pipeline synchronize their working copy frequently with the
central repository that is shared by all team members (1). They pull changes
from others and push their own contributions. The repository is being moni-
tored by the build server. Every time a new commit is pushed to the repository,
the build server will update its working copy and build the project (2). This
typically includes multiple build stages, for example, compiling the sources,
running the tests, generating documentation, or validating the software qual-
ity through static analysis. If all these stages have passed (3), the build is
considered to be successful, which typically results in the release of the soft-
ware. If the build fails, on the other hand, developers are being notified by
the build server about the error. This typically happens through sending an
email or by visiting the web frontend of the build server (4). The developers
have to consult the build log (5) to understand the problem and provide a fix,
a difficult and time-consuming task that typically consists of three steps.

Log Inspection: The developer investigates the build log to get further infor-
mation about the build failure. While it is often simple to spot the part
in which the build failed, it is very often difficult to read the log and to
understand the failure reason.

Hypothesis: Once the developer has an intuition about the root cause for the
break, the problem should be replicated, if possible on the developer machine
and ideally by providing a test. This makes it possible to use a debugger to
inspect the failure.

Fix: If the root cause of the build failure is identified, fixing it is usually the
easy part. The developer implements the fix, pushes it to the repository,
and waits for the result of the new build. All the steps are re-executed if the
build fails again.

Executing these three steps is difficult and deriving a hypothesis about the
root cause of the failure requires experience. If the developer gets stuck, a
common strategy is to ask more experienced team members [20] or to search
on the Internet for solutions [44].

In this paper, we present Bart (6), the Build Abstraction and Recovery
Tool that supports developers by enriching the build log through summariza-
tion and linking of external resources. We have designed Bart as a support
tool for Maven builds and we have created a proof of concept implementation
for the build server Jenkins. Our solution is complementary to the existing
pipeline that we have discussed before. Bart does not replace the inspection
of the build log, instead, the build log is embellished with further information
to facilitate a faster and better decision making of the developer. For example,
our screenshot (7) shows the Build Summary (a general summary of the build
result) as well as a list of hints, in this case details about a compilation error.
These hints are included in the Jenkins build overview page.

6 Vassallo et al.

StartedAt: Date
Duration: TimeSpan
Name: string

Module
1 *
Modules

Result

Goal

Vendor: string
Plugin: string
Goal: string

GoalName

Name

Content: string

LogLine

UNKNOWN,
INFO
ERROR,
WARNING,
NONE

LogLevel
«enum»

Level

1 *
Goals

1 *
Payload

Result

StartedAt: Date
Duration: TimeSpan
TotalMemory: int

Build

GetResult(): BuildResult
GetLastExecutedGoal(): Goal
GenerateSummary(): string

SUCCESS,
FAILURE,
SKIPPED

BuildResult
«enum»

Fig. 2: Meta-Model that Is Available to Hint Generators In Bart

Bart facilitates the generation of these hints with two reusable parts. First,
it parses the build log, extracts all relevant sections (e.g., keywords, commands,
built modules), and stores this preprocessed information in a meta-model (8).
Second, Bart is extensible through additional Hint Generators (9). We have
built five different hint generators that summarize the information found in
the build log, as well as hint generators that use information from the build
log to search for solutions in the Internet. For example, our proof-of-concept
implementation can link to related discussions on StackOverflow.

We will introduce these individual parts in the remainder of this section.
Section 2.1 introduces our build-log meta model and describes our parsing.
Section 2.2 contains the extension point mechanism for hint generators and
a description of the four different hint generators that summarize build log
information. Section 2.3 discusses the hint generator that links build failures
to external information, such as discussions on StackOverflow.

2.1 Detecting Failure Information in the Log

Build tools typically log all their actions in a detailed log that allows developers
to reconstruct their actions after the fact. Such a build log is typically stored
as plain text. All details about the build are contained, but such logs are very
large, e.g., even the build log of the relatively small Maven build tool itself
(∼ 130K LoC) results in a build log of more than 1,500 lines. To make the
creation of new hint generators in Bart straight-forward, we preprocess these
logs. We provide an abstraction over a Maven build log that makes it easy to
find exactly the information that the hint generators need. While we are going
to focus on the Maven build system [25], the most used build tool among Java
developers [24], the underlying idea is general and can also applied to other
build systems. In this section, we will first briefly describe Maven’s building
concept, the structure of its build log, and our parsing. We will then introduce
our meta model that we use to store the relevant build information.

Maven follows the concept of convention over configuration. It provides a
standard build configuration that defines several phases that are run one by

Developer-Oriented Assistance for Build Failure Resolution 7

one in the default build lifecycle (e.g., compile, test, verify). The set of phases
is fixed and most of them are empty by default. A concrete build job can
now add specific goals to the different phases, if needed. So, for example, a
project could add the invocation of a static analysis tool to the verify phase.
In practice, build files contain the configuration for many of such goals that
range from dependency resolution in the very beginning of builds to packaging
or deployment that typically take place at the end.

Maven builds are organized hierarchically. In addition to the goals that
are configured in the build file for the current module, parent configurations
can be referenced to inherit configuration options. In addition, it is possible
to refer to submodules that are then build together with the current module.

At each build and starting from the module for which the build was trig-
gered, Maven creates the dependency tree between all (sub-) modules and
schedules the individual builds in an order that does not violate their depen-
dencies. In Maven terminology, this build plan that contains the names of all
modules is called the reactor. During the build, one section is dedicated to
each module. This section contains entries for each executed goal, which might
also prints additional output to the log. At the end of the build, Maven gen-
erates a reactor summary, which lists the individual build results. In addition,
the reactor summary will also show consumed memory, and -for build failures-
further information about the module and goal, in which the build broke.

As a first step in the failure resolution, a developer that has to read such
a build file, has to navigate through a big log to find the relevant information.
This is also a hard task for an automated processor, because the individual
parts need to be parsed or otherwise processed with string utilities.

To simplify the access to the contained information, we implemented a
parser that, taking a build log as input, fills the meta-model that we have
created, as depicted in Figure 2. The model follows the structure that we have
introduced before. The root entity of a build log is a Build, which has basic
properties like the required memory for the build. A build refers to several
Module definitions that are part of the build. In addition to timing information,
each module has a unique name and a result. It also contains information about
the different Goals that were executed while building it. Each Goal combines
the GoalName (i.e., a reference to the tool that was run), the BuildResult or the
invocation, and a Payload, which contains all output that was generated for this
Goal. Each line is annotated with a LogLevel and contains content as string.

The original build log contains a reactor summary at the very end that
can be requested by calling Build.getSummary(). We do not explicitly store the
contained information in the meta-model, because it can be fully inferred from
the stored data. In general, this meta-model does not lose any information of
the original log. It splits information into individual sections and provides easy
access, but it could be transformed back into the original log file.

Please note that the parser used for this paper does not support the com-
plete meta-model yet. Our implementation supports all parts that were used
for the summary generation, leaving out details like the build duration or the

8 Vassallo et al.

amount of memory that were irrelevant in this context. This does not repre-
sent a conceptual limitation of the meta model though and can be solved by
spending more implementation effort on the parser.

2.2 Summarizing Build Log Information

Understanding the extensive build logs generated through a Maven build is
tedious. The reactor summary that is automatically generated at the end of
a build contains basic information about a build failure and represents a first
step in the right direction. However, the information is presented as plain text
without any highlighting and it is hard to read by developers. In addition,
only the lines of the failing goal that are marked as error are included in
the summary, surrounding information, which could further explain the error,
is omitted. We think that this current build summarization is not sufficient.
Thus, we propose an improved summarization and a highlighting of the im-
portant pieces to ease the life of developers and to make them more efficient
in understanding the build log.

Inspecting the failing section of the build log should provide all required
information to understand the cause of the failure, so it represents the starting
point of any investigation of a build failure. However, the actual information
that is included in the corresponding part of the build log can be very extensive
(e.g., long lists of executed tests) and it also heavily depends on the failing goal.
Fortunately, it has already been shown that build failures can be assigned to
different categories, based on the goal or build step that failed [51]. We propose
to provide a better guidance in the fixing process by tailoring the summary to
the failure category.

We have created a conceptual framework and use it to present build sum-
maries. The implementation is modular and general, but we provide an inte-
gration into the build server Jenkins, which adds the polished output to a
build report that is shown in Figure 1. To create this output, we first parse
the build log into our meta-model. Build status and individual build goals are
directly available in the model. We do not add hints to successful builds, so
we can directly skip them in the processing. For a failing build, we determine
the failure category based on the last executed goal. Using this category, it
is possible to find applicable hint generators to save execution time. These
specialized hint generators can provide hints that might point the developer
towards a build fix. A Hint is just a key-value dictionary that can contain arbi-
trary contents. Hint generators can return an empty list, a single hint, or also
multiple hints. The presentation to the user is achieved by iterating over all
hints and by putting all their key/value pairs into a table. We do not imply any
restriction on the type of key that can be generated, because the actual hint
generator should select the most meaningful information for the developer.

In this paper, we focus on a proof-of-concept implementation that supports
the most frequent build break categories. Based on the dataset of industrial
and open-source projects analyzed in previous work [51], the most common

Developer-Oriented Assistance for Build Failure Resolution 9

build failure types are Compilation (9% of open-source and 6.5% of industrial
projects), Dependencies (7.1% of open-source and 6.3% of industrial projects),
Testing (41.3% of open-source and 39.5% of industrial projects), and Code
Analysis (4.2% of open-source and 16.4% of industrial projects). Please note
that we did not consider cross-cutting categories such as Release Preparation
as suitable for our implementation, because (i) they are not associated with
a specific step of the build process and (ii) the structure of the log is highly
variable. In addition, we want to provide an additional Build Summary that
provides an overview over the whole build. In the following, after providing
an overview, we will briefly introduce these different hint generators, which
information we want to show to the developer in each case, and how we can
get access to the required build log data.

� Build Summary: The Build Summary provides a high-level overview over
the result of the build. It mimics Maven’s reactor summary, but reduces the
amount of information to a minimum. Rich formatting options are applied
to highlight the different information. You will find an example of the build
summary in Figure 1. Each summary is composed by the following sections.

Reactor Summary: The list of modules can be requested from the Build object,
their individual results can be directly used.

Build Result: Can directly be requested from a Build object.

Failed Goal: The last executed goal of a failing Build.

Error Cause: The error cause consists of the error message that is printed by
the failing goal. These can be extracted by selecting all lines of the goal that
have the log level "error".

� Compilation Failures: The hint generator should provide detailed informa-
tion about the location of the compilation error. All this information can be
found in the Payload of the failing goal.

Type: Name of the type (e.g., class) that could not be compiled.

Line: Line number, in which the error has occurred.

Reason: Textual description of the compilation error, e.g, instantiation of an
abstract class, when provided by the build log.

� Dependency Failures: Declared dependencies can lead to various build fail-
ures. Our summarizer helps understanding the dependency error by showing
the following information.

Dependency: The name of the dependency that causes the failure. The Maven
coordinates of the dependency are mentioned in the error message and we
use a regular expression to parse them.

Reason: Textual description of the dependency error. Typical reasons are in-
valid versions numbers or missing internet access.

10 Vassallo et al.

� Testing: Testing failures are particularly tricky to fix, because they can
occur after introducing a change in a completely different part of the system.
For this reason, it is important that a hint does not only contain the location of
the test, which is required to replicate the failure locally, it should also contain
the reason that explain the failure. As a result, the hint generator reports the
following:

Location: The location, in which the testing failure occurs. This contains both
the test class and the failing test case.

Reason: A textual description of the test failure. This is taken from the failed
assertion statement, so the quality of these descriptions depends on the
concrete test case. In case of an error, also the stack trace of the failure will
be included.

� Code Analysis: Many builds use static analysis tools to validate properties
(e.g., a consistent programming style) of the system. Like for all other types,
also for code-analysis failures developers need to find the relevant information
that is spread across different sections of the log. Let us consider a simple
example, a Checkstyle error. The Maven’s reactor summary only reports
"You have 1 Checkstyle violation", but to understand the actual problem, the
developer first has to find the right section of the log, which then includes the
detailed description (e.g., "Line is longer than 120 characters"). Each static
analysis tool produces a different output and individual hint generators are
needed to cover them. We selected Checkstyle as a representative for such
static analysis tools because is the most frequently used in open-source Java
projects [5,56]. We include the following information that help to understand
related build failures:

Location: The path to the file, in which the style violation was detected. The
location also includes the line number.

Reason: Name of the style rule that caused the failure. These names are typ-
ically very expressive, e.g., "method name too long", so the proposed hints
are potentially very meaningful.

� Future Extensions: Future hint generators might use other build-log infor-
mation in their hints. They can either reuse our meta model or provide their
own extraction strategy to find the interesting information in the build log. It
is possible, for example, to use custom regular expressions to parse specific in-
formation from the Payload. As a fallback, it is always possible to recover a full
build log from our meta-model, which ensures support for all hint generators
that work on the build log. Extensions that require external files in addition
to the build log, like test coverage reports, represent a special case. These files
are not contained in the build log. Hint generators that require access can still
parse the respective path from the build log and open these files separately.

Developer-Oriented Assistance for Build Failure Resolution 11

Fig. 3: Hint that Links Related StackOverflow Discussion

2.3 Hints from External Sources

Summarizing local information improves the ability to understand the contents
of the build log. However, developers may encounter situations, in which the
error message is easy to understand, but requires a complex fix. For example,
if the source level is not configured in Maven, it will use Java version 5 by de-
fault. If the developer now writes Java code in a newer version, e.g., version 8,
and uses one of the newly introduced constructs, e.g., lambda expressions, the
Maven compiler plugin will fail with a syntax error, even though no problem
will be reported in the development environment. While the summary will
point out a syntax error very clearly, in this case, an inexperienced developer
will struggle to solve this on their own and will either ask a more experience
colleague for help or simply search for a solution on the internet. For this rea-
son, we also need to provide an infrastructure in Bart that allows the creation
of hint generators, which can go beyond a local summarization. These external
hint generators should be able to add additional hints and link to external
resource in their suggestions for possible solutions.

It is very likely that, in case of a build failure, a similar build break has
already been discussed online. Previous work has already shown that question
and answer sites, like StackOverflow, can provide a great source of infor-
mation to support developers [32]. The site contains almost 60K discussions
that are related to Maven development [43], which makes us very confident
that it can also be a good source for tips on how to fix a broken build. An
example of a hint that refers to a StackOverflow discussion is shown in
Figure 3. The example hint explains a specific compilation failure and also
links the full discussion to provide additional context.

To obtain relevant discussions from StackOverflow, we use a twofold
approach. First, we query StackOverflow for discussions that are related to
the build log. Second, we rank the returned posts and present the most relevant
discussions to the developer. The hint engine starts with requesting the build
log and the hints that have already been generated in the local summarization
step. Given that the local hint generators have already identified the key parts
of the build log, we make use of this information to create a query that is as
specific as possible. The hints are being cleaned by removing local information
(e.g., paths or file names) and common overhead that is added in every Maven
build (e.g., formatting characters or goal names). The resulting query mainly
contains the error message that describes the failing build and it is used to
search on StackOverflow.

12 Vassallo et al.

Table 1: Analyzed Projects

Project Name Version Size (LoC) #GitHub Stars #Builds

ActiveJPA 0.3.5 39,335 143 123 (master)
Sentry-java 5.0.0 113,332 312 509 (master)
Fongo 2.1.1 31,088 374 404 (master)

In a second step, we rank the returned posts to identify the ones that are
most related to the actual build log. To achieve this, the build log is first
cleaned in the same way as the query and then tokenized to create a set of
keywords that describe the build. Common english stop words (e.g., "the",
"or", "and") are removed to improve this set of keywords. For each post, we
calculate a post score by counting how many different keywords are used in
the body of the discussion. After ordering the posts by their score, the top four
proposals are selected and shown to the developer. We decided to list the top
four posts because because this number typically avoid that developers have
to further scroll the page. We did not want to come up with a long list that
adds an additional burden on the developers.

3 Investigating the Effect of Bart on Build Fixing Practice

To understand the effects that a tool like Bart has on the practice of fixing a
build, we conduct an empirical study, in which we will quantitatively measure
Bart’s capability to improve the understandability of build failures and to im-
prove the performance of developers when fixing broken builds. This first study
consists of two parts, a controlled experiment and a follow-up questionnaire,
that covers the different aspects that we want to investigate.

Understandability: In the first part, we assess whether or not the summaries
generated by Bart make it easier to understand the cause of a build break
and to formulate a solution strategy.

Performance: In the second part, we measure Bart’s effect on the required
time to fix certain types of build breaks.

In the following, we will first introduce the context and our methodology that
we have applied to investigate both aspects and we will then answer the first
two research questions.

3.1 Context

The context of our study includes (i) as objects, build breaks that we have
generated from selected Java projects, and (ii) as subjects, developers that
participated in our controlled experiment.

Developer-Oriented Assistance for Build Failure Resolution 13

The three software systems that we considered in our study are illustrated
in Table 1. We followed the methodology of Bavota et al. [4] to select systems
that developers can easily get familiar with and that are, at the same time,
representative for real software systems. ActiveJpa [2] is a Java library that
implements the active record pattern on top of Java Persistence APIs (JPA).
Sentry-java [39] is an error tracking system that helps developers to monitor
and fix crashes in real time. Fongo [10] is an in-memory Java implementation
of MongoDB. The considered systems are hosted on GitHub and built on
the cloud-based build infrastructure of TravisCI. While our selected systems
have less than 500K lines of code, they are very popular (more than 100 stars
on GitHub) and frequently built (more than 100 builds on the master branch).
For our study, we have injected bugs into these systems to generate broken
builds. The introduced bugs belong to the four most recurrent categories of
build failures [51], i.e., compilation, dependencies, testing, and code analysis.
We created different mutations of the extracted systems for every category of
broken builds and ended up with five broken ActiveJPA versions, two broken
Sentry-java versions, and one broken Fongo version.

More details about these broken versions are depicted in Table 2. We al-
ways created two mutated versions to avoid learning effects in both tasks of
the study. To generate the testing build breaks we changed an assertion in the
test class FongoAggregateProjectTest from assertNotNull to assertNull. We have
also altered the count method of the class org.activejpa.entity.Model by adding
an incorrect offset to the returned value. We chose an obvious mistake to fail
the build, i.e., we added 100, which is easy to spot. To provoke dependency
build breaks, we have first inserted an obvious non-existing dependency and,
second, we included a typo in another (existing) dependency. We have in-
troduced two code analysis build breaks in Sentry-java, by adding a new
method with a very long name to the class SentryAppender and by deleting the
Javadoc comment of the method doClose in the class AsyncConnection. Both
are picked up by CheckStyle, which will raise the errors Very long function
name and Javadoc has empty description section. Finally, to create compila-
tion errors we added a return statement in the void method close() of the class
org.activejpa.JPA and inserted an illegal combination of static and abstract in
the signature of the method deleteAll of class org.activejpa.entity.Model.

We contacted participants by sending out invitations to students from the
University of Zurich (UZH) and Swiss Federal Institute of Technology in Zurich
(ETHZ) and to professional developers that we reached through our personal
contacts. In total, 17 participants completed our controlled experiment. We
made sure that all participants have used Maven before. The majority of our
participants (9, 53%) report three to five years of programming experience,
while six participants (35%) declare that their experience exceeds five years.
Only two participant reported less than three years of programming expe-
rience. 11 (65%) participants work as professional developers. We asked the
participants to self-estimate their programming experience in a five-point Lik-
ert scale [21] from very low to very high. Out of all participants, 10 report an

14 Vassallo et al.

Table 2: Mutated Components in the Analyzed Systems

Build Break Type Project Mutated Component

Task 1
Test Fongo com.github.fakemongo.FongoAggregateProjectTest
Compilation ActiveJPA org.activejpa.jpa.JPA
Code Analysis Sentry-java net.kencochrane.raven.connection.AsyncConnection
Dependencies ActiveJPA pom.xml

Task 2
Test ActiveJPA org.activejpa.entity.Model
Compilation ActiveJPA org.activejpa.entity.Model
Code Analysis Sentry-java net.kencochrane.raven.log4j.SentryAppender
Dependencies ActiveJPA pom.xml

experience level of above average or higher (very high: 2). Only 2 participants
rate their experience as below average and no one rated their experience as very
low. Our participants represent a diverse group with different backgrounds.

3.2 Experimental Procedure

The empirical study we conducted with our participants consists of two differ-
ent tasks and was supervised by one of the authors. We provided summaries
and solution hints generated by Bart to our participants to study the under-
standability of build breaks. In the second task, we investigate whether Bart
can speed up the fix.

First Task: Understandability: In the first task, our participants answered a
questionnaire about the understandability of the build break summaries pro-
vided by Bart. We used Bart to generate summaries and solution hints for
the broken builds of the mutated software components in Table 2 (Task 1) and
asked our participants to evaluate them. We provided our participants with
the following three questions and we asked them to answer on a five-point
Likert scale from very high to very low :

– How much did your understanding of the build failure improve through the
summary of the build log?

– To what extent do the suggested solutions help you in conceiving a strategy
to solve the build failure?

– To what extent are the suggested solutions applicable to the specific build
failure?

Second Task: Resolution Performance: In the second task, we measured the
time it takes developers to fix a broken build to analyze the effect of Bart.
Every participant was asked to fix two of the four manually injected bugs for
Task 2. Specifically, each participant had to fix one bug with treatment (i.e.,
support through Bart) and another one from a different category without.

Developer-Oriented Assistance for Build Failure Resolution 15

We have avoided learning effects between the two different fix attempts of
each participant by changing the type of build failure and by changing the
software component, in which the bug was introduced. In total, we tested
eight scenarios and each of the four different build failures was fixed twice,
once with and once without treatment. The participants always started with
fixing the build failure without treatment. All participants managed to fix
both assigned builds without external help.

One of the authors supervised the task and started the experiment with
an introduction to Bart. Participants were then asked to import the assigned
projects into their development environment. We were using a Jenkins build
server, which, in case of a build failure, produces a build overview that indi-
cates the build result (i.e., Failed), the last Git commit that was pushed to the
remote repository, and the name of the committer. In addition, Jenkins pro-
vides access to the generated build log. The supervisor gave our participants
time to get familiar with the projects and with the Jenkins instance that was
used to build the projects. To start the fix attempt of the build failure, our
participants were asked to trigger a new build of the assigned project and to
repair the resulting build failure. The task supervisor measured the resolution
time, i.e., the time between the build break and the next build success. The
same methodology was applied for the second build fix attempt.

General Feedback: After finishing the experiment, our participants filled a sur-
vey and participated in semi-structured interviews, in which we asked them
for their opinions on the build-failure summarization. The survey was focused
on three main questions. The first question was about Bart’s ability to pro-
vide assistance for build failure resolution. We discussed with our participants
what they like or dislike about our approach. In the second question, we asked
for the perceived benefits of using Bart. The last question asked whether our
participants would integrate a tool like Bart in their regular CI pipeline.

All 17 participants filled out the survey, but only nine participants agreed
to participate in a follow-up interview. We recorded and transcribed these in-
terviews and then performed card sorting to analyze the answers to our open
interview questions [42]. We started by splitting the answers into individual
statements, grouped common arguments, and finally organized these argu-
ments hierarchically. We will use statements from the participants later, when
we discuss the results of our experiment, and indicate which participant made
them (e.g., I3 is interviewee with id 3, S5 is survey participant with id 5).

3.3 Understandability of Build Breaks

Our first research question was how build summarization can improve under-
standibility. To answer this question, we evaluate the ratings of our partici-
pants for the generated summaries of Bart. We visualize the answers in three
diverging stacked bar charts [37] that illustrate their rating regarding the un-
derstandability of the summaries (Figure 4), their relevance (Figure 5), and

16 Vassallo et al.

their applicability to the build break (Figure 6). We use the Likert values very
high, above average, average, below average, and very low.

Understandability: Figure 4 shows how participants rate the understandability
of Bart’s summaries compared to the raw build logs that are provided by
Jenkins. All participants agree across the board that the understandability
of the build break summaries is at least above average, with the majority
saying that it is very high. Only in two cases, one for compilation and one
for dependencies a participant found the build summary below average and
average respectively. Specifically the participant found that Bart’s summary
for the dependency error was comparable to the default build-log presentation
in Jenkins and that it did not improve.

The developers seem to agree that Bart’s summaries helps them to better
understand the build log. One of the participant describes the actual build
logs as “cryptic” (I8), which could be caused by a lack of experience in reading
it. However, the overloading amount of information that is contained in a
build log is a recurring theme in the answers of our participants, even from
experienced developers. Another participant said that “Maven logs tend to be
verbose, having a quick summary [...] greatly reduces the time needed to find
and correct a build failure” (I5) and another one that “[Bart] helps to find
the programming errors quickly” (I4) and “a structured summary is way easier
to grasp than many unstructured lines of text” (I4).

Our participants almost unanimously agree that Bart’s build summaries
improve the understandability of build logs.

Relevance & Applicability: Figures 5 and 6 illustrate relevance and applicabil-
ity of the proposed solution hints from StackOverflow. The solutions hints
for compilation and code analysis breaks were mostly positively rated. Most
our participants found their relevance and applicability above average, more
than half of them rated them very high. However, two participants found the
applicability of the solution for the code analysis break below average and one
of them, according to the background information a very skilled developer, has
also considered the relevance of the solution below average. The one partici-
pant that has considered the solution hint for the compilation build break as
very low has little programming experience and uses Java only occasionally.
We assume that he simply did not understand the suggested hint.

Most study participants find the solution hints for build breaks caused by
compilation and code analysis errors relevant and applicable.

In case of the dependency build break, the participants do not agree on
a rating for the relevance and applicability of the solution hints. The ratings
are centered around average, some of the participants find the suggestions
relevant and applicable (one participant considered it even very high), while
others rate it below average. Two participants even think that the applicability
of the solution hints is very low. One of them is no frequent Java user, but
the other one has a very strong background in Java programming, so a lack of
expertise alone does not explain the different ratings.

Developer-Oriented Assistance for Build Failure Resolution 17

Suggested solutions for dependency errors are often not considered as valuable
hints by our participants.

Our respondents were also not convinced about the relevance and appli-
cability of solution hints for testing build breaks. Most of our participants
consider them below average or even very low when compared to the original
build log. One possible explanation is that the available information in the
build log of a failing testing build, i.e., the name of the failed test, is project
specific. This makes it unlikely to find related solutions for such local errors
in external resources without taking other information into account.

Testing-related build failures are project specific. The build log alone is not
sufficient to identify related external resources.

3.4 Resolution Time of Build Failures

Our second research question was whether Bart can reduce the time that is
required to fix a build. To answer this questions, we have asked our partici-
pants to fix the failing builds of the second task while measuring the required
time. Table 3 illustrates the results of this experiment. It shows the average
time to repair the different build failure types with and without the support
of Bart and the corresponding standard deviations. We computed the coeffi-
cients of variation (CV) [9] for all the combination of build failure types and
fixing modalities. All our calculated CV values are smaller than the traditional
threshold 1 (in fact, all values are < 0.5), which shows that the measured times
are centered around the mean. For this reason we refer to the average values
in the following. While the previous research question has revealed that the
ratings for relevance and applicability of Bart’s solution hints differ between
the build break types, the results of the second task shows that using Bart
leads to a substantial reduction from 20% to up to 62% in the required time
to fix a build across all scenarios. We will discuss the different break types
individually to explain what seems to be a contradiction at a first glance.

Code Analysis and Compilation: The study participants found that Bart’s
summaries improve understandability and that the solution hints are both
relevant and applicable. The positive ratings can also be confirmed in the
practical task. The time to fix a build break could be reduced by 62% for
build breaks related to code analysis and by 20% for build breaks related to
compilation errors.

The error messages of both compilation and code analysis are self-
explanatory, but a certain degree of expertise is needed to understand them.
Fortunately, the exact same error messages and warnings appear in other
projects as well, so it is easy to find information online that provides con-
text to understand the error message. Our solutions hints are able to enhance
the description of a warning or even replace it and the developers get an ex-
planation of an error or of a violated rule without having to look it up on

18 Vassallo et al.

Very Low Below Average Average Above Average Very High

0%

0%

6%

0%

100%

100%

94%

94%

0%

0%

0%

6%

Compilation

Dependencies

Testing

Code Analysis

100 50 0 50 100

Percentage

Fig. 4: Understandability of Summaries

Very Low Below Average Average Above Average Very High

0%

12%

24%

65%

82%

71%

53%

6%

18%

18%

24%

29%

Compilation

Dependencies

Testing

Code Analysis

100 50 0 50 100
Percentage

Fig. 5: Relevance of Proposed Solution

Very Low Below Average Average Above Average Very High

12%

18%

35%

82%

76%

71%

53%

0%

12%

12%

12%

18%

100 50 0 50 100
Percentage

Compilation

Dependencies

Testing

Code Analysis

Fig. 6: Applicability of Proposed Solution

external resources. This aspect is particularly useful when the developer is not
used to a specific code analysis tool.

Our participants found it very helpful that Bart integrates all required in-
formation to understand the meaning of a rule violation “Less searching for the
relevant part in the error message, hence faster bug resolution” (I2). Moreover,
the links to StackOverflow are highly appreciated when the meaning of a
warning is non-obvious. “In the less obvious error causes, the stack overflow
extracts prove to be very useful” (I5). In these cases, the StackOverflow
discussion about the proper solution can provide additional context informa-

Developer-Oriented Assistance for Build Failure Resolution 19

tion to understand the problem. The StackOverflow solution hints speed
up the development process, because “You can often get the information from
bart without having to search the internet” (I6).

In addition to the summary, solution hints can provide the required context
that helps with understanding the cause of a build break.

Dependency and Testing: The relevance and applicability of the suggested
solution hints were not considered useful for dependency breaks and testing
failures. These low ratings can easily be explained though. A search for the
corresponding error message would either return many unrelated resources
(e.g., cases in which other developers had trouble with some other depen-
dency) or none (because the error message of a test failure is project specific).
However, we could still see a substantially reduced fixing time for both cate-
gories. The improvement for dependency related build breaks (43%) has even
been the second most significant reduction among all considered cases.

When considering error messages in both categories, it becomes apparent
that both are typically very self-explanatory. The errors immediately point
to the missing dependency or name the failing test. The required action to
fix such issues is straightforward: search for the missing library in the Maven
Repository and add it to the build file or fix the failing test, respectively.
The participants that fixed such kind of breaks have reported that the reor-
ganization of the information contained in the build logs significantly reduced
the amount of time needed to understand the cause of a build break. One of
our participants stated that “[Bart is] mostly a timesaver, not really a skill
enhancer. Carefully reading the log usually allows the extraction of the same
information” (I5). Another participant found that “directly serving the relevant
solution, the debugging process is drastically sped up” (I1).

Another important aspect that affects the time to fix a build is the debug-
ging environment. Previous work has shown [16] that CI server like Jenkins
do not provide sufficient support to debug a build break. According to our
participants, however, Bart summaries “add more capabilities to the envi-
ronment” (I6) compared to the raw build logs and “might make debugging
unnecessary when the bug becomes evident” (I2). They report that “if some
tests fail, the Bart output can be helpful in finding out why” (I5).

Dependency breaks and testing failures seem to be easy to understand. Pro-
viding a good summary that highlights the locality of the issue seems to be the
most crucial factor on fixing time.

Overall, it seems that the different build break categories require different
support strategies. Some categories benefit from links to external resources
that provide additional context about an error (e.g., compilation errors), others
benefit more from an improved summarization (e.g., testing failures). Bart
combines both in one tool and substantially reduces the time to fix a build
break across all scenarios in our study, on average by 37%.

20 Vassallo et al.

Table 3: Resolution Time per Build Failure Type (Avg.: Average, Std. Dev.:
Standard Deviation)

Failure Type excl. Bart (s) incl. Bart (s) Reduction (%)
Avg. Std. Dev. Avg. Std. Dev.

Testing 436 154 334 33 23%
Compilation 187 19 150 32 20%
Dependencies 223 74 127 16 43%
Code Analysis 280 109 106 39 62%

Overall Average 37%

3.5 General Feedback on Bart

Most of our participants (76%) benefited from using our build summaries dur-
ing failure resolution. 53% reported that the big advantage provided by Bart
is the speed up in solving those failures. One participant stated that “especially
with very large build logs and more complex errors bart really helps to reduce
the time needed to figure out where the error happened” (I7). For 23% of our
participants, the main advantage of using build failure summaries is an easier
analysis of the root cause of the failure because “a structured summary is way
easier to grasp than many unstructured lines of text” (I4). 12% were not sure
about Bart’s benefits and another 12% did not think that Bart provides
particular advantages. 63% like Bart because they have to read less informa-
tion in order to fix a build failure. This is strictly connected to the most cited
benefit provided by Bart, i.e., a faster build resolution. 16% also appreciated
having links to relevant StackOverflow discussions that can point them to
the right solution. They found those links useful especially when the problem
is quite complex to solve as stated by a participant “Additional links to related
StackOverflow posts can be helpful in fixing more complex problems” (I9). 21%
really like the overview of the failure provided by Bart that highlights the
root cause of the failure. The last feedback that we received was about the
applicability of Bart in the actual development context of the participants.
35% would immediately install our tool. 23% would like to install Bart, but
they are not using Jenkins or Maven in their current projects. Furthermore,
one participant (I4) believes that he would install Bart for big projects and
another would use it only if there is “there is no installation overhead” (I2).
Finally, 12% would maybe install Bart, 6% do not know, and 24% do not
want to install our tool mainly because it does not apply to their context.

4 The Developer’s Perception of Build Fixing Practice

The results presented in the previous section show that Bart can provide as-
sistance that improves the developer’s performance when fixing build failures.
Besides a summarization of the error cause, which seemed to be universally

Developer-Oriented Assistance for Build Failure Resolution 21

helpful across all failure scenarios, Bart also provides solution hints that help
developers to derive fixing strategies. However, the results of our follow-up
questionnaire have shown that the applicability of these solution hints differs
between the failure categories. While they seem to be helpful for some fail-
ure categories (e.g., compilation and code analysis), the results are no longer
unanimous for dependency-related failures, and our solution hints do not work
for testing. To further investigate and explain this observation, we analyze the
developers’ perception of build failures. We first identify the characteristics
of typical workflows for fixing build failures in various categories and answer
RQ3. After this, we answer RQ4 by exploring what types of build failures de-
velopers consider more difficult to fix. We will use these findings to discuss
the current limitations of our StackOverflow-based approach and we will
envision future solution-hint generators.

4.1 Survey on the Perception of Build Failures

The goal of this study was to understand how people react to build failures
and what types they consider hard to fix. In order to fulfill our goal, we sent
out a survey. In the following, we describe our survey’s questions and the
demographics of our participants.

Structure: Our survey consisted of 15 questions and was divided into 4 sec-
tions. In the first section, Background, we collected the demographics of our
participants. In the next two sections illustrated in Table 4, we surveyed de-
velopers on the difficulty of solving build failures and on their reaction to the
most common build failure types. We wanted to identify whether it is harder to
inspect the root cause of the build failures instead of understanding the prob-
lem and plan the fix (Q1.1) and for which types (Q1.2 and Q1.3). In Q2.1-Q2.4
questions, we asked our participants to reflect on their workflows for solving
compilation, dependencies, testing, and code-analysis build failures. In the last
section, we let our participants add opinions on the survey and report other
build failure types that researchers should investigate more.

Recruitment: Our survey was implemented using Google Forms. To re-
cruit participants we posted our survey on the Question and Answer Site
Reddit [36], on which we targeted 15 specific subforums (so-called “subred-
dits”), namely r/DevOps, r/LearnProgramming, r/WebDev, r/iOSProgramming, r/Docker,
r/learnJava, r/Python, r/cpp_questions, r/dotnet, r/javscript, r/ruby, r/swift,
r/coding, r/androiddev, and r/csharp. We selected these communities because
they (i) allow users to post surveys, (ii) have a large number of active sub-
scribers, thus increasing our potential audience (e.g., the r/DevOps subreddit
has approximatively 300 members that are online daily), and (iii) include
members that frequently encounter build failures. We also sent an email to
the mailing lists of Maven (users@maven.apache.org, dev@maven.apache.org), Ant
(user@ant.apache.org), and Jenkins (jenkinsci-users@googlegroups.com). The sur-

22 Vassallo et al.

Table 4: Survey Questions. (MC: Multiple Choice, O: Open answer)

Section Summarized Question Type #

What makes it hard to fix a build?
Q1.1 What typically takes longer, finding relevant information or un-

derstanding the problem to derive a fix?
MC 101

Q1.2 For which kind of build failures does it take long to find the
relevant information?

O 101

Q1.3 For which kind of build failures does it take long to understand
the problem and to derive a fix?

O 101

How you would react to a build failure notification in the following scenarios?
Q2.1 Scenario 1: A compilation error broke the build. O 101
Q2.2 Scenario 2: The build broke due to a dependency error. O 101
Q2.3 Scenario 3: The execution of a test has failed. O 101
Q2.4 Scenario 4: A build failed, because a quality concern was de-

tected.
O 101

vey was available for 2 months in two different periods (from mid-October to
mid-November 2018 and March 2019).

Demographics: A total of 101 respondents completed the entire questionnaire.
Among all survey respondents, 88.1% work as professional developers. 3% are
spare-time developers and 4% are students. The remaining part of our par-
ticipants (4.9%) consists of build engineers, DevOps engineers, site-reliability
engineers, and industrial researchers. 86.2% of our respondents rate their pro-
gramming experience High or Very High. In most of the cases (58.4%), the
highest qualification is a Bachelor Degree, while 16.8% hold a Master Degree,
and 4% have a Ph.D. degree. Self-studied developers represent 14% of our
respondents. Our participants report that 26.7% encounter build failures fre-
quently and 6.9% very frequently. The majority (48.5%) reports encountering
build failures occasionally.

4.2 How Do Developers Approach Different Types of Build Failures?

The fact that solution hints work for some categories of build failures, but
not for others, suggests that developer approach these kinds of build failures
differently. To better understand these differences, we have asked our partic-
ipants to describe the typical workflow in which they would address several
kinds of build failures, under the assumption that they do not know from the
start what caused the problem. Participants could give an open answer and
were supposed to illustrate the individual steps.

4.2.1 Methodology

To identify the typical workflows for the four main build failure categories
that are covered by Bart, i.e., compilation, dependencies, testing, and code

Developer-Oriented Assistance for Build Failure Resolution 23

analysis, we have conducted an open-coding approach [42] to encode the de-
scribed workflows from the open answers of our participants. Given that the
output of the coding is not simple labeling, but a complex graph describing
the workflow, we had to adapt the traditional methodology. Two authors of
this paper have performed the following steps to extract the workflows.

Common Vocabulary: The first step in our methodology was to establish a
shared vocabulary, i.e., a set of activities that we accept in the extracted
workflows. Both authors individually inspected 80 answers that span over 80
participants and all four scenarios to create two individual sets of activities.
In a joined discussion, the authors merged both lists, eliminated duplicates,
agreed on activity labels, and clarified overlapping cases. We ended up with the
following list of activities. The high-level concepts are only used for grouping
and are not used as labels.

Start & End: All workflows have the label Error notification as the start node
and the label End to indicate a fixed build.

Locating: Activities in this category are related to understanding the error
message and to finding further information about the error.

– Most of the time, developers open the build log, either via a web browser or
through clicking a link in an email. The first step is then to Locate the Error
in the log to understand the type of error.

– We extract an Understand details activity, every time the developer state that
they look for information in the build log, like line numbers or test names.

– Many developers state that they Reproduce the problem, either locally on their
development machine or on a build host, to collect further information.

Inspect Changes: Once the error message is understood, developers often con-
tinue to inspect the changes of the last commit or differences in the envi-
ronments. We differentiate the following activities.

– The most common activity to understand the root cause of an error is to
Inspect code changes that have recently been introduced.

– Another frequent activity is to Inspect the Config to understand recent
changes or differences in, for example, tools and environment.

– Developers check the version control system to Identify committers, either to
ask them for details or to delegate the fix of the build failure.

– Several developers state that they Inspect process documentation to under-
stand the reason for a change, for example, through release notes, a
changelog, or an issue tracker.

– Some developers mention that they Inspect the build history to extract his-
toric information about past builds, like previously failing builds.

Investigation: Developers perform various steps to further investigate the fail-
ing build and understand more details about the error cause.

– Many developers Read/Debug the affected source code. We combine both ac-
tivities in one node because it is often not clear which one is meant.

24 Vassallo et al.

– Automated Static-Analysis Tools (ASAT) can provide diagnostic informa-
tion about a build, e.g., the dependency graph. We extract a Use ASAT activity
when developers apply them to find hints towards a solution.

– Sometimes, the build log is not enough and developers need to Consult
external logs, e.g., other log files or screenshot of the failing application.

– Often as a measure of "last resort", developers perform a Websearch to find
more information or an illustration of the problem online.

– In some cases, developers state that they Lookup the documentation to under-
stand the meaning of a particular error message.

– To get further information about a change, it is sometimes necessary to
Contact an expert. This person is typically either familiar with the affected
part of the codebase or is the committer of the latest changes.

Solution Attempt: In the final phase of a workflow, developers state how they
approach the fix. We differentiate between five alternative activities.

– The most obvious activity is when a developer states that, after understand-
ing the problem, it is clear how to change the project to Fix the build.

– Various answers mention that they would use Automated Fixes, for example,
an environment’s clean-up, dependencies’ update, or an automated refac-
toring.

– A re-occurring strategy is to Delegate the Fix to someone else, usually to the
original developer who committed the change that caused the build failure.

– The answers contain descriptions of very strict workflows, in which devel-
opers Revert commits to fix the build failure as quickly as possible.

– Developers, that come to the conclusion that the build failure is either irrel-
evant or an incorrect state, Ignore the problem, e.g., by removing a failing
test case or by ignoring a quality check.

Verify: Several authors describe steps to verify the solution, both locally and
remotely. We use the label Verify to represent these cases.

Exclude: Several of the answers had to be excluded from our analysis. Instead
of extracting a complete workflow, we then only extracted a single label.

– We extract the label Not a problem in practice, whenever participants state
that this particular problem does not occur in their typical workflows.

– If we can not extract meaningful information (e.g., in case of an empty
answer), we treat the entry as an Invalid answer.

– In several cases, participants are not able to explain how they would ap-
proach the problem in the stated scenario (I don’t know).

This set of activities was stable during the open coding session. The authors
did not find any description that could not be encoded with these labels.

Coding Rules: In a first training iteration, the authors have encoded the 80
answers (20 answers per scenario) that have been used in the vocabulary step.
This step has first been performed individually. Afterward, the results have
then been discussed and merged into a joined encoding. As part of this merge

Developer-Oriented Assistance for Build Failure Resolution 25

discussions, the authors have agreed on a set of coding rules that decide corner
cases, in which the authors disagreed in their separated coding sessions. The
authors then performed a second training iteration separately (120 answers,
30 per scenario), using these rules to test their applicability. The resulting
workflows were discussed again, agreed on, and the rules have slightly been
refined. The authors ended up with the following set of rules.

1. The initial state of a workflow is always an Error Notification. The end state
is always the End node, which indicates a fixed build. The participants do
not know what has caused the error, so unless developers explicitly mention
that they do not check, we include the Locate Error activity, through which
they understand the type of error that has occurred.

2. Locate Error informs about the error type (e.g., the build failed due to a
compilation problem), but it does not provide enough information for a Fix
(i.e., Locate error → Fix is an invalid transition).

3. Just stating to read the log does not define any solution strategy and is
considered an Invalid Answer. Also, ambiguous statements are considered in-
valid. If missing steps are implicit and clear from a mentioned strategy, we
fill the gaps. However, incomplete cases (e.g., when a "branch" in a case
distinction is missing) are also considered Invalid Answer.

4. We consider the answers of all four scenarios together, since some partici-
pants do not repeat details that are mentioned before.

5. Running the debugger requires to Reproduce the Problem first. Please note
that Read/Debug can also just mean reading the code, which does not require
to Reproduce the Problem.

6. The activity Identifying committers needs a reason. Typically, this is either
done to Delegate a Fix or to Contact the Expert to understand further details.

These rules remained stable during the following open-coding session and both
authors used them to encode all remaining answers separately.

Validation: A workflow consists of nodes and directed edges. The nodes have
labels that correspond to the established vocabulary, edges connect nodes to
indicate a sequence of activities. To make the individual workflows comparable,
we wrote them down in the Dot syntax for directed graphs. For example, a
"diamond" workflow that does a and then either b or c, but ultimately always
d, can be expressed in the simple graph G { a→b→d; a→c→d; }.

After encoding all remaining 204 open answers separately, we validated the
reliability of our process. We could not calculate the traditional Inter-Rater
Reliability [7], because the resulting workflows are more complex than simple
labels that are either correct or not. Instead, we calculated the similarity of
the resulting workflows. We use a normalized hamming distance to calculate
the similarity of two encoded workflows [38]. The contained nodes and edges
of the graph build a set of graph elements, the more of these elements a work-
flow has, the larger it is. When comparing two workflows, the set-size of the
larger workflow defines the maximum distance nmax between both workflows.

26 Vassallo et al.

We count the number of elements nshared that both workflows have in com-
mon. The normalized distance is then defined as d = nshared/nmax, which is
bounded by 0 (completely different workflows) and 1 (identical workflows).

After the coding phase of the remaining 204 open answers, we achieved a
perfect agreement in 105 cases (51.5%). The workflows, in which we disagreed
had an average similarity of 50.0%. Without looking at the other solution, both
authors re-coded theses cases and many cases turned out to be trivial mistakes
like forgetting the End node. After fixing these obvious mistakes, the agreement
increased to an exact match in 145 cases (71.1%), with an average similarity of
53.3% for the workflows with disagreement. All remaining disagreements were
solved in a joined coding session.

Aggregation: After agreeing on the sorting results for all 101 participants,
we merged the individual workflow descriptions into joined representations.
The general approach was to simply overlay all workflows and to count how
often each of the nodes and edges occurs in the dataset. The result was a
graph with high complexity that was caused by various infrequently named
transitions. To remove rare activity sequences that blur the overall picture,
we have filtered activity sequences (i.e., edges) that were described less than
three times. A straightforward implementation of this filtering would just leave
out these edges from the graph, which would not only result in inconsistent
counts, but it can also result in invalid workflows with "gaps". To preserve
this consistency and, at the same time, to preserve as much information from
the workflows as possible, we performed a branch elimination: We checked for
each workflow whether it contained any of the filtered edges. If found, the edge
was removed and so were all the previous and following edges that were not
reachable otherwise. As an illustration, consider the previous example graph
G. Assuming that the edge c → d is rare and should be filtered. In this case,
we would not only remove c → d, but also a → c, which would otherwise
create a "loose end". We preserve the sequence a → b → c in the graph, but
count the workflow as a partially filtered case. In case the branch elimination
removes all steps, we filter the whole workflow and count it as a filtered case.

The results of this aggregation are shown for the four different scenarios
in Figures 7-10. Both the nodes and the edges contain counts that indicate
how often the respondents have mentioned it. For the edges, we adapt the line
width depending on the count to highlight the most common flows.

4.2.2 Extracted Workflows

In this section, we describe the workflows that we have identified for the main
build failure categories. We illustrate the main steps that lead our participants
to the resolution of the failures and we discuss the differences among the
resulting workflows.

Compilation Failures (Figure 7): After being notified developers typically lo-
cate the error that informs about the compilation failure. In many cases, they
need to understand further details from log such as the line number where the

Developer-Oriented Assistance for Build Failure Resolution 27

Locate Error (63)

Understand Details (55)

55

Reproduce Problem (23)

8

Fix (64)

40

11

Read/Debug (4)

4

Identify Committers (3)

3

End (67)

56Verify (8)

8

Delegate Fix (3)

3

22 Inspect Confg (3)

3

3

4 3

Error Notifcation (67)

63

4

8

Minimum Count: >=3
Not a problem in practice: 5
Invalid Answer: 12
I don't know: 1
Filtered: 16
Partially Filtered: 5

Fig. 7: The Process of Fixing Compilation Build Failures

error occurs. This is often sufficient to immediately fix the problem. However,
a few more steps are sometimes needed. Developers reproduce the failure lo-
cally (even immediately after the error notification or locating the error) and
inspect changes made to environments such as a recently-introduced new ver-
sion of the compiler. Others read the source code to increase their knowledge
about the part of the system affected by the error. A few developers identify
the authors of the last commits included in the failed build and ask them to
fix the failure. Finally, only 8 developers verify the fix before committing it.
Overall, compilation failures are considered relevant by the majority of our
participants. Only 5 of our participants do not encounter these types of fail-
ures.

Dependency Failures (Figure 8): Understanding the type of failure is the first
step performed by developers when they run across a dependencies failure.
Before directly applying the fix, the majority of our developers investigate
additional information in the build log such as which dependency is missing or
broken. In some cases, the information contained in the log is not enough to
fully understand the problem and fix it. Thus, developers reproduce the failure

28 Vassallo et al.

Locate Error (44)

Understand Details (39)

39

Reproduce Problem (13)

5

Fix (44)

29

8

Read/Debug (3)

3

Websearch (4)

4

End (44)

39 Verify (5)

5

10 Inspect Confg (3)

3

3

3

Error Notifcation (44)

44

4

5

Minimum Count: >=3
Not a problem in practice: 9
Invalid Answer: 16
I don't know: 1
Filtered: 31
Partially Filtered: 3

Fig. 8: The Process of Fixing Dependencies Build Failures

locally (some of them avoid to fully inspect the log before) and depending on
the severity of the problem they look at the differences between the local and
remote environments (e.g., the dependency is available locally but not on the
remote server). Others read source code requesting the dependency reported
in the log or they search the Internet for similar failures. Finally, in a few
cases, they verify the applied fix before committing it. Also in this case, only
5 participants consider dependencies failures as a problem not occurring in
practice.

Testing Failures (Figure 9): Developers start fixing testing failures identifying
the build failure type in the log. While a minority immediately reproduce the
failure locally or start identifying people committing the last changes, many
developers inspect the build log searching for the tests that did not succeed.
Then 4 possible directions are taken before the problem is fixed. The majority
of developers decide to investigate the test failure locally. They reproduce the

Developer-Oriented Assistance for Build Failure Resolution 29

Locate Error (66)

Understand Details (48)

48

Reproduce Problem (32)

14

Identify Committers (7)

4

Fix (61)

17

18

Inspect Code Changes (4)

4

Read/Debug (21)

8

3

Ignore (3)

3

End (66)

56 Verify (5)

5

Delegate Fix (4)

4

21 Inspect Confg (3)

3 13

3

4

21

4

Contact Expert (3)

3

3

Error Notifcation (66)

66

5

3

Minimum Count: >=3
Not a problem in practice: 5
Invalid Answer: 15
I don't know: 1
Filtered: 14
Partially Filtered: 6

Fig. 9: The Process of Fixing Testing Build Failures

last build and, if needed, debug the failed test or inspect the configuration files.
Other developers inspect the history of code changes to identify (i) which was
the previous version of the test or the code under test and (ii) which were the
previous developers working on them. The goal of identifying committers is
two-fold. On the one hand, developers can contact them to ask questions about
the failure and generally to receive support while fixing the test. On the other
hand, developers can delegate the fix to them. Surprisingly another direction
is to ignore the failure. This happens when the code under test is not used or
the test is obsolete or flaky (see Section 4.3). The last option is to immediately
fix the problem based on the information retrieved from the build log. In a
few cases, the fix is also verified. Testing failures are experienced almost by
all participants. Only 5 developers do not consider them a real problem in
practice.

Code-Analysis Failures (Figure 10): Code analysis are the failures with the
highest percentage of "Not a problem in practice" answer (from 27 partici-

30 Vassallo et al.

Locate Error (36)

Understand Details (33)

33

Identify Committers (7)

3

Fix (29)

29

Ignore (9)

9 4

End (36)

29 Delegate Fix (7)

7

9

Error Notifcation (36)

36

7

Minimum Count: >=3
Not a problem in practice: 27
Invalid Answer: 20
I don't know: 2
Filtered: 16
Partially Filtered: 3

Fig. 10: The Process of Fixing Code-Analysis Build Failures

pants). These participants do not check for code quality during the build or,
when it is checked, poor code quality is not set as a failing condition for the
build. As regards the resolution workflow developers start investigating the
type of the occurred failure. Then they either inspect the log to have more
details about the warnings raised by the static analysis tools that provoked
the failure or identify the committers of the last changes included in the failed
build. The former step is used to judge the failure. If the violations are con-
sidered relevant developers apply the fix using the description available in the
log. Otherwise, developers decide to ignore the violations and disable them
in the configuration files of the invoked static analysis tools. The goal of the
latter (that is sometimes performed without understanding more details from
the log) is to delegate the fix to the authors of the last changes.

4.2.3 General Insights and Actionable Results

After discussing the four merged workflows separately for each scenario, we
now reflect on observations that affect multiple of these workflows. Some inter-
esting insights only appear when the various workflows are being compared.

Build failures are very rarely solved in a collaborative effort. Few devel-
opers mention that they get in contact with the authors of the "implicated"
commits while fixing compilation, testing, and code-analysis failures. In the
case of compilation and code-quality issues, the only purpose is to delegate

Developer-Oriented Assistance for Build Failure Resolution 31

the fix to them. For some testing failures that they feel competent to fix, de-
velopers get in contact with the committers to have more information about
the change causing the failure and to receive feedback about the resolution
strategy. Developers always try to solve dependencies failures themselves.

Developers often reproduce the failure locally to ease the task of inspecting
the root cause in the code. If a build failure cannot be reproduced some devel-
opers also start inspecting differences between local and remote environments,
suspecting that they caused the failure. While for other build failure types
understanding details from the log is often sufficient to fix the error, most of
the developers reproduce a testing failure locally before fixing. This means
that the typical textual description of the errors contained in the log is only a
starting point for the investigation. To devise a resolution strategy developers
also need to understand the semantic of the changes causing a testing failure
and possibly debug the failure to identify bugs captured by the test. In such
a workflow a better summarization of the build log would not help to plan a
fixing strategy and solution hints are needed. However, websearch (which is
the basis of our solution hints as described in Section 2.3) is rarely used and
only to search for solutions to dependencies failures.

Code-analysis failures are considered "second-class" failures by many de-
velopers. They do not encounter build failures due to code-quality issues and
such mistakes are typically unimportant/omittable and not worth scheduling
during the build. Even when code-analysis is a proper step of the build, de-
velopers typically inspect the log not only to understand the issue causing the
failure (that is typically easy to fix based on the description) but also to judge
the violations and decide whether fix or ignore them.

Ignoring a failure is a much more common reaction for code-analysis fail-
ures. From the answers, the main reason seems to be that the high false-
positive rate makes it necessary to ignore false warnings. Also, test failures
are sometimes ignored, but here changing requirements are often named as
the cause. The test is then ignored to give time to clarify requirements or fix
implementation.

Developers often trust their devised solution. Only a few developers verify
their solution, before integrating it into the master branch. This contradicts
one of the key principles of CI, that is “run private builds” [8]. According to the
principle, developers should emulate an integration build on their local work-
station after committing their changes in order to prevent new build failures
on the mainline.

Coming back to our initial observation on how StackOverflow-based
solution hints do not work for some categories, the most interesting insight
from our study is that searching the internet for solutions is not a common
practice. In the case of compilation, dependencies, and code-analysis failures
developers often rely only on the information contained in the log. This con-
firms that a summarization approach pointing to the relevant information in
the log can avoid the burden of inspecting thousands of lines of code and
be sufficient to plan the fix. In the case of testing, developers need instead
additional information to devise a fix strategy. However, our solution hints

32 Vassallo et al.

were considered irrelevant. Based on the workflow in Figure 9, the reason is
that developers typically reproduce the failure locally and debug it to guide
the resolution process. Testing failures are too project-specific to search the
internet for general solutions. Future extensions of Bart should ease the re-
producibility of build failures and its solutions hints provide developers with
the semantic content of the change causing the test failure.

4.3 What Types of Build Failures Are Hard to Fix?

In the previous section, we have analyzed the most common workflows while
solving build failures. Our participants typically start collecting relevant infor-
mation about the problem and then try to understand it. In most of the cases
build logs are enough to locate the error while especially in case of testing
failures developers also need to reproduce the failure locally. As the answer
to Q1.1, 62.4% of our respondents believe that understanding the problem is
the hardest part. Instead, 19.8% think that finding relevant information is the
most time-consuming activity, while 17.8% spend the same time both on col-
lecting information relevant to the failure and on understanding the problem.
We further investigate those two phases of the build resolution process and ask
our participants in Q1.2 and Q1.3 which build failures are more difficult to
inspect (i.e., require more time to collect information about their root causes)
or which ones are instead harder to understand. We performed card-sorting to
identify the recurring concepts in the answers to these questions and obtained
the results presented in Figures 11a and 11b.

Failures Hard to Inspect: Most of our participants consider infrastructure prob-
lems as the hardest to inspect (Figure 11a). They struggle to locate misconfig-
urations of the CI workflow that causes failures (e.g., the CI server is not able
to fetch new changes from the remote repository) or locating errors that are
caused by a poor definition of the build scripts. The second most cited fail-
ures (failures with inadequate logs) in Figure 11a do not relate to a particular
category of failures. Failures sometimes happen on servers that are external to
an organization, producing logs that cannot be accessed by developers. And
build logs are often simply not enough to fully locate the cause of the failure.
In the presence of Dependency breaks, looking for conflicting dependencies
takes a long time for 11 participants. Also the fourth most-mentioned failure
(Unreproducible failures) is not specific to a particular failure category. These
failures cannot be reproduced on the local machine of the developers and their
build log is often not sufficient to fully locate the failure’s cause. Developers
need to replicate the error locally to generate additional log statements (e.g.,
by making Maven logging more verbose with the -V option) or reports (e.g.,
JUnit reports). Reproducing failures is sometimes impossible because of a sig-
nificant difference between developer’s and the remote build’s environments.
Other failures that developers find hard to investigate are caused by defects
of the third-party tools that are used during the build. These failures are usu-
ally caused by unmet requirements (e.g., a specific version of the compiler is

Developer-Oriented Assistance for Build Failure Resolution 33

Bu
ild

 F
ai

lu
re

 C
at

eg
or

y Infrastructure Problem

Failure with Inadequate Logs

Dependencies

Unreproducible Failures

Third-party Tools’ Failures

Testing

Compilation

participants
0 7.5 15 22.5 30

2
7

9
10
11
12

30

(a) ... Finding Relevant Information

Bu
ild

 F
ai

lu
re

 C
at

eg
or

y Testing
Infrastructure Problem

Dependencies
Unreproducible Failures

Failure with Inadequate Logs
Third-party Tools’ Failures

Compilation
Code Analysis

participants
0 7.5 15 22.5 30

2
3

5
6

10
19
19

24

(b) ... Understanding the Problem.

Fig. 11: Build Failure Types Our Participants Struggle-with while ...

missing). Several participants reported test and compilation failures without
providing a specific reason. Finally, 8 participants answered that looking for
the error cause is straightforward (independently from the build failure type)
while other 2 spend a lot of time in understanding all types of build failures.

Failures Hard to Understand: Figure 11b illustrates the build failures for which
our participants state that understanding is more difficult when deriving a fix.
Despite finding the error that causes a testing failure is hard only for 7 partic-
ipants (see Figure 11a), those failures are mentioned as the hardest to figure
out. In this category, many developers mention integration and flaky tests.
The second hardest type of failure is infrastructure problems. Developers re-
port misconfigurations of the CI workflow and poor-defined build scripts as
reasons. Many developers spend a long time not only on locating the outdated
dependency but also on finding the right fix strategy. This is the reason why
Dependency failures are also considered hard to fix. As in Figure 11a, also in
Figure 11b 10 developers report unreproducible failures. The impossibility to
reproduce the failure not only makes it hard to locate the error, but slows
the understanding process down. Developers cannot verify (and refine) a hy-
pothesized fix strategy without running a new build on the remote server.
Third-party tools’ failures sometimes require to replace a particular tool due

34 Vassallo et al.

In
fra

st
ru

ct
ur

e
Pr

ob
le

m
s Authentication Errors

Network Problem

Poor Build Scripts

Inadequate Hardware

participants
0 1.75 3.5 5.25 7

1

3

3

4

0

7

7

7

Hard to inspect Hard to understand

Fig. 12: Root causes of infrastructure-related build failures.

to incompatibility with others used during the build or, in case of defects, as
a temporary fix before the next update. This can take a long time and involve
multiple developers. Finally, a few participants mention also compilation and
code-analysis failures as the most time-consuming to understand. Only four
participants consider fixing all build failures a trivial task while one considers
all types of build failures difficult to fix.

Cross-cutting Failures: While the others can be directly mapped to known
build failure types [51], infrastructure problems, failures with inadequate logs,
and unreproducible failures are cross-cutting categories that are not associated
with a particular stage of the build process. A failure with inadequate logs in-
dicates the problem of having build failure logs that do not contain enough
information to start inspecting the failure’s cause (sometimes the build log is
not accessible). Unreproducible failures are build failures that cannot be repro-
duced in the developer’s machine. Infrastructure problems are heterogeneous
and are also perceived by many developers as both hard to inspect and un-
derstand. Figure 12 illustrates which are the infrastructure problems reported
by our participants as answers to Q1.2 and Q1.3. Note that the figure does
not include answers that refer generally to infrastructure problems without
specifying the problem.

Different machines are involved in a CI workflow. Some of them are also
not directly controlled by an organization. Authentication errors provoked
by wrong credentials or network problems bringing about the unavailability
of servers are mentioned by several participants as causes of build failures.
Poor build scripts (e.g. scripts which contain hard-coded credentials or other
security smells, can be susceptible to security breaches [33]) contribute to
generating build failures. One participant mentions inadequate hardware. It
can slow down the development process and generate server timeouts.

Discussion of Painful Build Failures: Previous work [51] has shown that the
most recurrent types of build failures are compilation, dependencies, testing,

Developer-Oriented Assistance for Build Failure Resolution 35

and code-analysis failures. While only a few participants mention compila-
tion and code-analysis, our study on the perception of build failures reveals
that testing and dependencies failures are also considered particularly hard
to understand. These results confirm the importance of assisting developers
during these types of failures and especially in case of testing failures that are
considered as the most difficult among all the mentioned failures. Our build
summarization approach increases the understandability of both categories.
Together with a few "known" categories, new ones emerged from our analysis
as the most painful categories. Those failures do not relate to a specific build
phase and are not the direct consequence of committed code changes. They
are caused by choices made while configuring the build process.

Developers use configuration files to define which tools are needed during
the build and which are the requirements of the environments where the build
is performed [13]. Depending on how the build process has been configured
developers can encounter failures that are related to the infrastructure, i.e.,
the way those tools are connected and invoked during the build process. As
shown in Figure 12, those failures can be caused by authentication or net-
work errors between connected tools that are often hosted on different servers.
Poorly defined build scripts or configuration files that define the build process
lead to the introduction of smells, that are symptoms of deeper problems in
the build process definition [13]. For example, build smells are indicative of
security weakness [33] or misuse of CI features [13]. Based on our results, the
presence of these smells also decreases the understandability of build failures.
In the presence of less comprehensive build scripts, developers have difficulties
understanding what to change in the configuration to resolve the failure.

Developers can control the amount of information that is generated by
tools invoked during the build process through log statements. Having short
logs reduces the amount of information developers have to read, but increases
the time needed to find relevant information and makes the failures even harder
to be understood. Our summarization approach tackles this problem pointing
developers directly to relevant information in verbose logs.

Developers can also configure the environment, in which the build is per-
formed. Those environments are usually very different from the local environ-
ment, in which developers implement code changes. For example, using several
operating systems or different versions of a compiler. Reproducing an error is
a crucial step towards understanding, but when a failure occurs on the build
server, developers find it very difficult to reproduce the error in cases, in which
local and remote environments are significantly different.

Among the most recurrent types of build failures, testing and dependencies
are considered hard to fix. Furthermore, other failures that are not build-phase
specific and are instead caused by the misconfiguration of the build process are
considered painful.

36 Vassallo et al.

5 Discussion

In this section, we discuss the main findings of our study and their implications
for researchers and practitioners.

For the RQ1, we found that summaries improve the understandability of
the build logs as it happens for source code [29]. Developers unanimously agree
that build summaries improve the understandability of build logs across the
most recurrent categories of failure.

In RQ2, we discovered that improving the understandability of the build
failures has a direct impact on the time needed to solve them. Across all the
categories covered in our study, build summaries speed up the build fixing
process: the time to fix is reduced by 23% in case of testing failures, by 20% in
presence of compilation errors, by 43% in case of dependency-related issues,
and even 62% in case of code violations. On average, developers using our tool
spend 37% less time on solving build failures.

Among the hints included in our summaries, there is a category of hints
that are generated by mining build failure solutions from StackOverflow
discussions. The applicability and relevance of the proposed solutions are quite
high in case of compilation and code analysis, less in case of dependencies
failures. Furthermore, most of the times the solutions proposed for testing
failures are not considered valuable. In RQ3, we found that this is mainly
caused by the lack of semantic information. Testing failures are project-specific
and search for the root cause on the internet is not effective.

Although solution hints from the internet are ineffective, in RQ4 we ob-
served that developers struggle mainly while fixing testing and infrastructure-
related failures. They find it difficult to derive a solution strategy for those
failures and more effective solution hints that leverage other sources than the
internet might be beneficial. Infrastructure-related failures do not refer to a
particular build step and they are not directly caused by committed changes.
They are issues provoked by the smelly configuration of a CI process.

Implications and Future Work: Our findings have important implications for
both researchers and vendor of CI servers. Existing tools provide a build
overview, but refer developers to the build logs for details, for example, to
understand the reason for a build failure. Our results suggest though that
build logs are difficult to understand and that integrating summaries of the
build failure into the build overview can support the comprehension process.

Despite not automating manual activity, we show that providing solution
hints that link to external resources (i.e., different from the build logs) can
be useful to developers. They can provide additional context that can help
to derive a solution strategy, especially when the root cause of a build failure
is unclear or when the solution is non-trivial. So far, our infrastructure only
considers StackOverflow discussions as external resource. Future hint gen-
erators could consider other resources, like generated reports or information
about deployed libraries, to create a more holistic picture of the failure.

Developer-Oriented Assistance for Build Failure Resolution 37

A better context awareness of the summarization tool might help to over-
come existing limitations, e.g., solution hints for testing failures. Based on the
build fix workflows analysis, developers frequently inspect previous changes
to understand the cause of the failure or simply for learning from solutions
applied to the same problems in the past. We argue that historical informa-
tion and the semantics of a change can be an important source of hints for
suggesting fixes to build failures.

This work introduces a technique to support developers when fixing a build
break by providing them with summarization and solution hints. However,
some build breaks cannot be reproduced locally and need to be solved on
the server. Future work should investigate new ways of bridging this gap by
considering differences between the remote CI environment and the local IDE
environment when searching for solution hints. Novel debuggers, tailored to CI
workflows, might help to improve the effectiveness when fixing build breaks.

Code-analysis failures are typically perceived as easy to fix, yet, they are
the ones that benefit most from the adoption of our tool. Our participants
also consider solution hints for code-analysis failures to be very relevant in the
build-fix process. A comparison to other failure types indicates that developers
tend to first judge the code-analysis failure, to decide whether the failure is
worth fixing or whether it should be ignored. Solutions hints can support this
decision by providing more details about the warning. For example, in case
of the violation ‘line is too long’, a link to a related discussion of appropriate
line length might help the developer to decide whether the warning is indeed a
violation. Tool vendors can further support this step by ensuring that violation
descriptions contain relevant contextual information.

For specific types of build failures, i.e., infrastructure-related failures, that
are caused by weaknesses of the adopted development pipeline rather than
by the change committed by a developer future hint generators should be
conceived. In particular, by extracting information from different nodes (e.g.,
servers) of the pipeline those generators must be able to provide developers
with the location of the error.

Assistance tools like Bart do not only have a positive effect on the devel-
oper that fixes the build. Supporting the individual developer has the potential
to increase team productivity, because it reduce the team downtime that would
normally be caused by the build break. Future work should investigate novel
build log summarization techniques to reduce the required time even further.

6 Threats to Validity

The work presented in this paper was carefully planned and executed, but
several threats to validity exist for our results. In the following, we will discuss
them and our mitigation strategies.

Threats to internal validity concern the confounding factors that might
have affected our results. We did not deploy our tool in a real industrial en-
vironment and only created versions of the software with artificial errors to

38 Vassallo et al.

evaluate our tool, which might not be representative of real errors. We tried
to mitigate this by injecting bugs that resemble the most common causes of
build breaks [40,51]. Also, injecting realistic faults is a common trade-off in the
design of many other studies (e.g., [31], [11]), so we strongly believe that our
setting is valid. Another aspect that might affect the reliability of our results is
the complexity of systems considered during the analysis. We tried to reduce
this threat by considering build breaks in our study, which belong to projects
that are not too big, but at the same time representative of real systems. It is
also possible that our participants didn’t fully understand the questions in our
questionnaire. We have reserved time before starting, to allow participants to
ask questions about the experimental procedure. Another threat is the man-
ual time measurement that could introduce a bias. However, the substantial
differences that we have measured far exceed the imprecision of the manual
measurement. Other build summarizers might exist and requiring our partici-
pants to read a plain-text build log could introduce a bias in our experiment.
However, we are not aware of any frequently used summarization tools and
we think that using the information that is available in a standard Jenkins
installation represents a valid baseline for our comparison. The subject under-
stands the treatment. However, we could not really hide the treatment. Given
that all participants have experience with Maven, every solution different from
inspecting the raw build log would have been considered the treatment. In CI
typically breaks are caused by recent changes, but our subjects do not have
access to the history. However, breaking changes are hidden in big commits
that tangle several changes, so a developer must first understand the error in
order to know what to look for in the commit. Learning effects might blur the
results because Bart is always used in the second task. We took strategies to
mitigate this potential bias. Participants have been coached in the beginning
and we made sure that all participants have the required knowledge to fix
build problems (in particular, all participants have used Maven before). De-
velopers have worked on tasks that affect different areas in the systems and the
workflows to address these problems differ, so we expect low learning effects.

Threats to external validity concern the generalizability of our findings. We
considered only four types of build breaks in our study. However, those repre-
sent the most relevant and recurrent categories of build breaks that have been
observed [26,40,6]. Furthermore, the participants in our study could be unrep-
resentative of all kind of developers. We mitigated such threat trying to reach
for both survey and controlled experiment people with different programming
skills, to make general consideration about beginner and expert developers.
Our tool, Bart, is the first implementation of an approach for build logs sum-
marization. The current design of our study only looks at errors introduced
by users. Future work should expand the scope and investigate build errors
that are caused by the environment of the build server (e.g., different locale
settings). The results presented in this work might not generalize beyond the
considered build failure types.

Developer-Oriented Assistance for Build Failure Resolution 39

7 Related Work

This paper is related to three lines of research: works on build failures, source-
code summarization, and mining Q&A sites. In the following, we will discuss
the most related previous works from these areas and relate them to the work
presented in this paper.

Build Failures: Prior studies have investigated the nature of build breaks.
Miller [26] found that the most recurrent causes of build failures in Microsoft
projects are poor code quality, testing failures, and compilation errors. Other
researchers [6,35] studied the frequency of different build failure types in open-
source projects, finding that builds generally fail because of failed test cases.
In our study, we focused on the most common build failure types according to
those studies. While several works focused on one particular type of build fail-
ure, e.g., code analysis [56] or compilation [40], Vassallo et al. [51] proposed
a broader taxonomy of build failures. They have analyzed 418 Java-based
projects from a financial organization and 349 Java-based OSS projects and
have identified differences and commonalities of failures between industrial
and open-source projects. Because we summarized Maven build logs of Java
projects, we decided to reuse this taxonomy to categorize our build failures.
Kerzazi et al. [19] have analyzed 3,214 builds in a large software company over
a period of 6 months to investigate the impact of build failures on the devel-
opment process. They observed a high percentage of build failures (17.9%),
which aggregate to a cost of more than 2,000 man-hours when each failure
needs one hour of work to be fixed. Vassallo et al. [48] found that the problem
of fixing build failures is even becoming more relevant in open-source projects.
Developers often cause build failures on the release branch and it takes (on
median) 17 hours to them. Some of these failures are noisy and complex [12].
Given that some builds have a misleading or incorrect status, developers are
required to carefully inspect the build outcome to verify the presence of pass-
ing jobs. Thus, build failures slow down the release pipeline and decrease team
productivity because they interrupt implementation activities [52]. This was
one of the motivations for our study: providing developers with a tool able to
support them while fixing build failures making the recovery process faster.

Existing plugins try to achieve the same goal. For example, Log Parser [1]
is a Jenkins plugin that allows developers to add custom parse rules in the
form of regular expressions. Matching parts of the build log are then high-
lighted for the developer. Bart pursues a different goal. It automatically se-
lects the relevant information with no effort required from developers and
organizes this information in summaries and by linking external information.
Researchers proposed approaches to automatically repair builds that break
due to dependency [23], testing-related issues [45], and that can be fixed by
generating patches that are applied to buggy build scripts [15,22]. The focus
of Bart is developer-oriented and complementary to automated approaches.
We assume that very often developer interaction is required to fix a build.

40 Vassallo et al.

Therefore, we try to empower the developer by improving build log under-
standability though summarization and linking to external resources.

Source-Code Summarization: During their regular work, developers have to
cope with a large amount of external data [14], e.g., bug reports or source code,
which is produced during software development. They need support while try-
ing to comprehend such data and summarization techniques can facilitate this
process. Several techniques have been proposed to summarize source code [29].
Haiduc et al. [14] proposed automatic source code summarization leveraging
the lexical and structural information in the code. Moreno et al. [27] conceived
a technique to automatically generate human-readable summaries for Java
classes relying on class and method stereotypes in conjunction with ad-hoc
heuristics. Other approaches generate summaries from source code artifacts,
such as code fragments [55] or code usage examples [28]. Moreover, Panichella
et al. [31] studied the impact of test case summaries on the number of fixed
bugs, proposing an approach that automatically generates summaries of the
portion of code exercised by each individual test. Other researchers focused
on the summarization of build reports [34] or user reviews [41]. Our approach
complements these approaches and presents a novel summarization approach
for another important software development artifact, i.e., the build log.

Mining Q&A Sites: Question and answer websites like StackOverflow have
been analyzed by several researchers to provide developers with helpful data
during software development. Ponzanelli et al. [32] enhance the IDE with
Prompter, a tool that automatically captures the code context in the IDE
to propose related StackOverflow discussions. Bart is very similar to this
work, it is integrated into the build server and acquires contextual information
about failing builds to assist developers with deriving a fix. Other researchers,
investigated the impact of using StackOverflow on development workflows.
Vasilescu et al. [46] analyzed the interplay between StackOverflow activ-
ities and code changes on GitHub. While a switch to StackOverflow in-
terrupts the coding, they were able to show a correlation between visits of
StackOverflow and code changes. Developers seem to frequently switch be-
tween their IDE and StackOverflow when they get stuck, which supports
our assumptions of Section 2. Finally, other researchers generated summaries
for Java classes [54] and methods [47] by mining source code descriptions on
StackOverflow. We also extract information from StackOverflow but
follow a different goal, i.e., providing hints for build fixes.

8 Summary

This paper presented Bart, a system that supports developers in understand-
ing build failures and effectively fixing them. Bart works on the build log,
summarizes build failures, and provides solution hints using data from Stack-
Overflow. We conducted an empirical study with 17 developers to assess the
effect of Bart on repairing build breaks. Our results show that developers find

Developer-Oriented Assistance for Build Failure Resolution 41

Bart useful to understand build breaks and that using Bart substantially
reduces the time to fix a build break, on average by 37%. To explain observa-
tions in our experiment, we have also conducted a qualitative study to better
understand the workflows and information needs of developers fixing builds.
We found that typical workflows differ substantially between various error cat-
egories and that several uncommon build errors, for example, errors related to
the infrastructure, are very hard to investigate and to fix. These findings will
be useful to inform future research in this area.

Acknowledgements We would like to thank all the study participants. C. Vassallo and
H. Gall acknowledge the support of the Swiss National Science Foundation for their project
SURF-MobileAppsData (SNF Project No. 200021-166275).

References

1. Log parser plugin. https://wiki.jenkins.io/display/JENKINS/Log+Parser+Plugin.
Accessed: 2018-02-08

2. Active JPA: A Simple Active Record Pattern Library in Java that Makes Programming
DAL Easier. https://github.com/ActiveJpa/activejpa/. Accessed: 2018-02-08

3. BART: Jenkins-Plugin. https://plugins.jenkins.io/bart. Accessed: 2019-07-24
4. Bavota, G., Gravino, C., Oliveto, R., De Lucia, A., Tortora, G., Genero, M., Cruz-Lemus,

J.A.: Identifying the weaknesses of uml class diagrams during data model comprehen-
sion. In: Proceedings of the 14th International Conference on Model Driven Engineering
Languages and Systems, MODELS’11, pp. 168–182. Springer-Verlag, Berlin, Heidelberg
(2011). URL http://dl.acm.org/citation.cfm?id=2050655.2050673

5. Beller, M., Bholanath, R., McIntosh, S., Zaidman, A.: Analyzing the state of static
analysis: A large-scale evaluation in open source software. In: IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), pp. 470–
481 (2016). DOI 10.1109/SANER.2016.105. URL http://dx.doi.org/10.1109/SANER.
2016.105

6. Beller, M., Gousios, G., Zaidman, A.: Oops, my tests broke the build: An explorative
analysis of Travis CI with GitHub. In: International Conference on Mining Software
Repositories (2017)

7. Cohen, J.: A coefficient of agreement for nominal scales. Educational and psychological
measurement 20(1), 37–46 (1960)

8. Duvall, P., Matyas, S.M., Glover, A.: Continuous Integration: Improving Software Qual-
ity and Reducing Risk. Addison-Wesley (2007)

9. Everitt, B.: The Cambridge dictionary of statistics. Cambridge University Press, Cam-
bridge, UK; New York (2002). URL http://www.worldcat.org/search?qt=worldcat_
org_all&q=052181099X

10. Fongo: Faked Out In-Memory Mongo for Java. https://github.com/fakemongo/fongo/.
Accessed: 2018-02-08

11. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated unit test
generation really help software testers? a controlled empirical study. ACM Transactions
on Software Engineering and Methodology (TOSEM) 24(4), 23 (2015)

12. Gallaba, K., Macho, C., Pinzger, M., McIntosh, S.: Noise and heterogeneity in historical
build data: an empirical study of travis CI. In: ASE, pp. 87–97. ACM (2018)

13. Gallaba, K., McIntosh, S.: Use and misuse of continuous integration features: An empiri-
cal study of projects that (mis)use travis ci. IEEE Transactions on Software Engineering
pp. 1–1 (2018). DOI 10.1109/TSE.2018.2838131

14. Haiduc, S., Aponte, J., Marcus, A.: Supporting program comprehension with source
code summarization. In: ICSE (2) (2010)

15. Hassan, F., Wang, X.: Hirebuild: an automatic approach to history-driven repair of
build scripts. In: ICSE, pp. 1078–1089. ACM (2018)

42 Vassallo et al.

16. Hilton, M., Nelson, N., Tunnell, T., Marinov, D., Dig, D.: Trade-offs in continuous
integration: Assurance, security, and flexibility. In: Proceedings of the 25th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, FSE 2017, p.
To Appear (2017)

17. Hilton, M., Tunnell, T., Huang, K., Marinov, D., Dig, D.: Usage, costs, and bene-
fits of continuous integration in open-source projects. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.
426–437 (2016)

18. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation. Addison-Wesley Professional (2010)

19. Kerzazi, N., Khomh, F., Adams, B.: Why do automated builds break? an empirical
study. In: 30th IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 41–50. IEEE (2014). DOI 10.1109/ICSME.2014.26. URL http://dx.
doi.org/10.1109/ICSME.2014.26

20. LaToza, T.D., Venolia, G., DeLine, R.: Maintaining mental models: A study of de-
veloper work habits. In: Proceedings of the 28th International Conference on Soft-
ware Engineering, ICSE ’06, pp. 492–501. ACM, New York, NY, USA (2006). DOI
10.1145/1134285.1134355. URL http://doi.acm.org/10.1145/1134285.1134355

21. Likert, R.: A technique for the measurement of attitudes. Archives of psychology (1932)
22. Lou, Y., Chen, J., Zhang, L., Hao, D., Zhang, L.: History-driven build failure fixing:

how far are we? In: ISSTA, pp. 43–54. ACM (2019)
23. Macho, C., McIntosh, S., Pinzger, M.: Automatically repairing dependency-related build

breakage. In: Proc. of the International Conference on Software Analysis, Evolution,
and Reengineering (SANER), p. To appear (2018)

24. Maple, S.: Java tools and technologies landscape report 2016. Zero-
Turnaround post (2016). URL https://zeroturnaround.com/rebellabs/
java-tools-and-technologies-landscape-2016/

25. Maven. http://maven.apache.org/. Accessed: 2018-02-08
26. Miller, A.: A hundred days of continuous integration. In: Proceedings of the Agile 2008,

AGILE ’08, pp. 289–293 (2008)
27. Moreno, L., Aponte, J., Sridhara, G., Marcus, A., Pollock, L.L., Vijay-Shanker, K.:

Automatic generation of natural language summaries for java classes. In: ICPC, pp.
23–32. IEEE Computer Society (2013)

28. Moreno, L., Bavota, G., Penta, M.D., Oliveto, R., Marcus, A.: How can I use this
method? In: ICSE (1), pp. 880–890. IEEE Computer Society (2015)

29. Moreno, L., Marcus, A.: Automatic software summarization: the state of the art. In:
ICSE (Companion Volume), pp. 511–512. IEEE Computer Society (2017)

30. Myers, G.J.: The art of software testing (2. ed.). Wiley (2004)
31. Panichella, S., Panichella, A., Beller, M., Zaidman, A., Gall, H.C.: The impact of test

case summaries on bug fixing performance: an empirical investigation. In: ICSE, pp.
547–558. ACM (2016)

32. Ponzanelli, L., Bavota, G., Penta, M.D., Oliveto, R., Lanza, M.: Mining StackOverflow
To Turn The IDE Into A Self-Confident Programming Prompter. In: MSR (2014)

33. Rahman, A., Parnin, C., Williams, L.: The seven sins: Security smells in infrastructure
as code scripts. In: 41st International Conference on Software Engineering (ICSE).
IEEE/ACM (2019)

34. Rastkar, S., Murphy, G.C., Murray, G.: Summarizing software artifacts: a case study of
bug reports. In: ICSE (1), pp. 505–514. ACM (2010)

35. Rausch, T., Hummer, W., Leitner, P., Schulte, S.: An empirical analysis of build failures
in the continuous integration workflows of java-based open-source software. In: Proceed-
ings of the 14th International Conference on Mining Software Repositories, MSR’17,
p. nn. ACM, New York, NY, USA (2017)

36. Reddit. https://www.reddit.com/. Accessed: 2018-02-08
37. Robbins, N.B., Heiberger, R.M.: Plotting likert and other rating scales. In: Proceedings

of the 2011 Joint Statistical Meeting, pp. 1058–1066 (2011)
38. Robinson, D.: An Introduction to Abstract Algebra. De Gruyter textbook. Walter de

Gruyter (2003). URL https://books.google.it/books?id=Yj3ApD8TeCUC
39. Sentry Java: A Sentry SDK for Java and other JVM languages. https://github.com/

getsentry/sentry-java/. Accessed: 2018-02-08

Developer-Oriented Assistance for Build Failure Resolution 43

40. Seo, H., Sadowski, C., Elbaum, S.G., Aftandilian, E., Bowdidge, R.W.: Programmers’
build errors: a case study (at Google). In: Proc. Int’l Conf on Software Engineering
(ICSE), pp. 724–734 (2014). DOI 10.1145/2568225.2568255. URL http://doi.acm.
org/10.1145/2568225.2568255

41. Sorbo, A.D., Panichella, S., Alexandru, C.V., Shimagaki, J., Visaggio, C.A., Canfora,
G., Gall, H.C.: What would users change in my app? summarizing app reviews for
recommending software changes. In: SIGSOFT FSE, pp. 499–510. ACM (2016)

42. Spencer, D.: Card sorting: Designing usable categories. Rosenfeld Media (2009)
43. StackOverflow: "Maven". https://stackoverflow.com/questions/tagged/maven. Ac-

cessed: 2018-02-08
44. Treude, C., Barzilay, O., Storey, M.A.: How do programmers ask and answer questions

on the web? (nier track). In: Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pp. 804–807. ACM, New York, NY, USA (2011). DOI
10.1145/1985793.1985907. URL http://doi.acm.org/10.1145/1985793.1985907

45. Urli, S., Yu, Z., Seinturier, L., Monperrus, M.: How to design a program repair bot?
insights from the repairnator project. CoRR abs/1811.09852 (2018)

46. Vasilescu, B., Filkov, V., Serebrenik, A.: Stackoverflow and github: Associations between
software development and crowdsourced knowledge. In: SocialCom, pp. 188–195. IEEE
Computer Society (2013)

47. Vassallo, C., Panichella, S., Penta, M.D., Canfora, G.: CODES: mining source code
descriptions from developers discussions. In: ICPC, pp. 106–109. ACM (2014)

48. Vassallo, C., Proksch, S., Gall, H.C., Penta, M.D.: Automated reporting of anti-patterns
and decay in continuous integration. In: ICSE, pp. 105–115. IEEE / ACM (2019)

49. Vassallo, C., Proksch, S., Zemp, T., Gall, H.C.: Un-Break My Build: Assisting Develop-
ers with Build Repair Hints. In: International Conference on Program Comprehension
(2018)

50. Vassallo, C., Proksch, S., Zemp, T., Gall, H.C.: Replication Package for “Every Build
You Break: Developer-Oriented Assistance for Build Failure Resolution" (2019). DOI
10.5281/zenodo.3346615. URL https://doi.org/10.5281/zenodo.3346615

51. Vassallo, C., Schermann, G., Zampetti, F., Romano, D., Leitner, P., Zaidman, A., Penta,
M.D., Panichella, S.: A tale of CI build failures: An open source and a financial organiza-
tion perspective. In: 2017 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2017, Shanghai, China, September 17-22, 2017, pp. 183–193 (2017).
DOI 10.1109/ICSME.2017.67. URL https://doi.org/10.1109/ICSME.2017.67

52. Vassallo, C., Zampetti, F., Romano, D., Beller, M., Panichella, A., Di Penta, M., Zaid-
man, A.: Continuous delivery practices in a large financial organization. In: 32nd IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp. 41–50
(2016)

53. Vos, T.E.J., Tonella, P., Prasetya, W., Kruse, P.M., Bagnato, A., Harman, M., Shehory,
O.: FITTEST: A new continuous and automated testing process for future internet
applications. In: CSMR-WCRE, pp. 407–410. IEEE Computer Society (2014)

54. Wong, E., Yang, J., Tan, L.: Autocomment: Mining question and answer sites for auto-
matic comment generation. In: ASE, pp. 562–567. IEEE (2013)

55. Ying, A.T.T., Robillard, M.P.: Code fragment summarization. In: ESEC/SIGSOFT
FSE, pp. 655–658. ACM (2013)

56. Zampetti, F., Scalabrino, S., Oliveto, R., Canfora, G., Di Penta, M.: How open source
projects use static code analysis tools in continuous integration pipelines. In: Proceed-
ings of the 14th International Conference on Mining Software Repositories, pp. 334–344.
IEEE Press (2017)

